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Chapter 4
Chemical Composition of Wildland Fire Emissions
Shawn P. Urbanski*, Wei Min Hao and Stephen Baker

Abstract

Wildland fires are major sources of trace gases and aerosol, and these
emissions are believed to significantly influence the chemical
composition of the atmosphere and the earth’s climate system. The
wide variety of pollutants released by wildland fire include green-
house gases, photochemically reactive compounds, and fine and
coarse particulate matter. Through direct emissions and secondary
chemical and physical processes, wildland fire can have a significant
impact on tropospheric chemistry and serve as a major source of air
pollution. We provide a synthesis of emission factor data from the
literature and previously unpublished research for use in global,
continental and regional scale studies investigating the role of
wildland fire emissions in atmospheric chemistry and climate. The
emission factor data is presented by geographic zones (boreal,
temperate, and tropical) and vegetation group (forest and savanna/
rangeland), allowing researchers to account for the different emission
characteristics exhibited by biomass burning in these disparate
regions. A brief overview of the wildland fuel combustion process as
related to emissions production is also provided. The atmospheric
fate of wildland fire emissions is briefly discussed and related to the
production of secondary air pollutants. Previously unpublished
results from a series of fire emission studies in the United States and
Canada are presented in an appendix.

*Corresponding author: E-mail: surbanski@fs.fed.us
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4.1. Introduction

Wildland fires emit large amounts of trace gases and particles (Ito &
Penner, 2004; Michel et al., 2005; van der Werf et al., 2006; Wiedinmyer
et al., 2006), and these emissions are believed to significantly influence the
chemical composition of the atmosphere (Lapina et al., 2006; Simpson
et al., 2006) and the earth’s climate system. The wide variety of pollutants
released by wildland fire include greenhouse gases (carbon dioxide
(CO,), methane (CHy), nitrous oxide (N,0)), photochemically reactive
compounds (e.g., carbon monoxide (CO), nonmethane volatile organic
carbon (NMVOC), nitrogen oxides (NOy)), and fine and coarse
particulate matter (PM). Wildland fires influence climate both directly,
through the emission of greenhouse gases and aerosols, and indirectly, via
secondary effects on atmospheric chemistry (e.g., ozone (O3) formation)
and aerosol and cloud microphysical properties and processes (e.g., the
“Twomey” cloud albedo effect; Lohmann & Feichter, 2005; Naik et al.,
2007). Wildland fire emissions contribute to air pollution by increasing
the atmospheric levels of pollutants that are detrimental to human health
and ecosystems and degrade visibility, leading to hazardous or general
nuisance conditions. The air quality impacts occur through the emis-
sion of primary pollutants (e.g., PM, CO, NO,) and the production of
secondary pollutants (e.g., O3, secondary organic aerosol (SOA)) when
NMVOC and NO, released by fires undergo photochemical processing.
Air quality can be degraded through local (Muhle et al., 2007; Phuleria
et al., 2005), regional (DeBell et al., 2004; Sapakota et al., 2005), and
continental (Morris et al., 2006) scale transport and transformation of fire
emissions.

The air quality impact of wildland fires depends on meteorology, fire
plume dynamics, the amount and chemical composition of the emissions,
and the atmosphere into which the emissions are dispersed. Fresh smoke
from burning wildland fuel is a complex mixture of gases and aerosols.
The amount and composition of fire emissions depends on a wide range
of variables related to fuel characteristics (type, structure, loading,
chemistry, moisture) and fire behavior (Christian et al., 2003). Fuel
characteristics are ecosystem-specific properties that are heavily influ-
enced by land use history and environmental conditions (e.g., seasonal
weather patterns that drive fuel moisture or anthropogenic nitrogen and
sulfur deposition that impact fuel chemistry). It is fuel characteristics in
conjunction with meteorology and topography that control fire behavior
(Albini, 1976; Anderson, 1983; Rothermel, 1972).

This chapter provides an overview of the wildland fuel combustion
process as related to emissions production and provides a synthesis of
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emissions data from the literature and previously unpublished research
for global and continental scale studies of atmospheric chemistry and
climate. We also briefly discuss the atmospheric fate of wildland fire
emissions and how it is related to the production of secondary air
pollutants. Last, we include an appendix of previously unpublished
results from a series of fire emission studies in the United States and
Canada.

4.2. Wildland fuel combustion process and emissions

Given an ignition, wildland fire propagates through heat transfer from
the open flame and burning region of a fuelbed to the unburned
components of the fuelbed. Heat transfer can occur through direct flame
contact, convective heating, radiative heating, and firebrand contact
(Morvan & Dupuy, 2001). The unburned material is thermally degraded
producing volatile gases that mix with air to form a combustible mixture
ahead of the flaming front. Ignition of the combustible mixture by the
flame spreads the flaming front (Benkoussas et al., 2007; Morvan &
Dupuy, 2001). In the wake of the flaming front, combustion continues in
the fuelbed, with regions of intermittent open flame. The combustion of
wildland fuels may be divided into several phases: distillation/drying,
pyrolysis, char oxidation, and flaming combustion (Benkoussas et al.,
2007).

Laboratory studies investigating the combustion of wildland fuels and
biomass provide valuable insight into the relationship between the
character of fire emissions and the combustion process. Distillation
involves volatilization of compounds stored in liquid pools as the
vegetation is heated. Distillation of freshly harvested live foliage has
been observed to emit a variety of volatile organic compounds (VOC;
Greenberg et al., 2006). Greenberg et al. (2006) measured emission rates
of terpenes, methanol, acetaldehyde, acetic acid, and methyl acetate from
five different vegetation species when heated from 60°C to 200°C.

Minimal thermal decomposition of lignocelluosic biomass occurs
prior to about 200°C, where pyrolysis begins (~250 °C for whole wood;
Rowell & LeVan—Green, 2005). Below 300 °C, pyrolysis mainly leads to
the production of volatile gases and the formation of reactive char
(Rowell & LeVan—Green, 2005). Low temperature pyrolysis (200-300 °C)
of freshly harvested live foliage and woody tissue produces CO, CO,, and
a host of oxygenated-VOC (OVOC), including methanol, acetic acid,
acetone, 1,3-butadione, furan, and 2-furyladehyde (Greenberg et al.,
2006). Oxidation of the reactive char leads to smoldering or glowing
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combustion. Pyrolysis and char oxidation create flammable gas mixtures
that form the flame. The flaming combustion process produces gas-phase
emissions that are dominated by highly oxidized compounds (CO,, NO,,
sulfur dioxide (SO»)) (Lobert et al., 1991; Yokelson et al., 1997) and
aerosol with a significant, but highly variable fraction of elemental carbon
(Chen et al., 2007; Radke et al., 1991; Reid et al., 2005).

After flaming combustion has ceased, oxidation of residual char results
in glowing combustion. As the heat intensity decreases and the levels of
combustible gases decrease, char oxidation initiates smoldering combus-
tion (Rowell & LeVan—Green, 2005). Large scale, open fires in laboratory
combustion chambers have identified several products of pyrolysis and
char oxidation occurring following the cessation of open flame; these
incomplete combustion products include CO, CH,, ammonia (NHj),
C2-C3 hydrocarbons, methanol, formic and acetic acids, and formalde-
hyde (Bertschi et al., 2003; Yokelson et al., 1996, 1997).

During a wildland fire event, the complex thermal degradation
processes (distillation, pyrolysis, char oxidation, and the oxidation of
the resultant gas products in flaming combustion) occur simultaneously
and often in close proximity. Thermal degradation of fuels occurs ahead
and along the fireline, while pockets of intermittent open flame often
persist well behind the flaming front. However, for purposes of
characterizing emissions, wildland fire behavior is usually described
based on the presence or absence of an open flame: “flaming” or
“smoldering” combustion. While this taxonomy is imperfect, it does
provide a basis for objectively describing the fire behavior associated with
emission measurements. The relative amount of flaming and smoldering
combustion in a wildland fire may be described using the combustion
efficiency (CE) or modified combustion efficiency (MCE) indices (see
Section 4.3). Numerous laboratory studies demonstrate flaming combus-
tion is characterized by high CE and MCE (Chen et al., 2007; Goode
et al., 1999; Yokelson et al., 1996). These studies demonstrate that values
of CE and MCE approach | when flaming combustion dominates—for a
bed of fine fuels (grass or conifer needles) completely engulfed in flame,
MCE is about 0.99 (Chen et al., 2007; Yokelson et al., 1996).

The presence of open flame—flaming combustion—has a significant
impact on the chemical composition of emissions and the plume dynamics
of the fire. Volatile gases created by thermal degradation of the fuels
are oxidized in the flame, generating more highly oxidized emissions
(Lobert et al., 1991; Yokelson et al., 1997). Flaming combustion is a
highly exothermic process that produces high-temperature gases and
subsequent convective lofting of emissions. Consumption of the fuel leads
to a reduced rate of pyrolysis and eventual cessation of the open flame.
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The continued thermal degradation of fuels in the postfrontal fuelbed is
the phase of fire commonly labeled “smoldering combustion.” During the
smoldering phase, the reduced rate of pyrolysis results in lower heat
production and fuel consumption rates (Freeborn et al., 2007; Lobert &
Warnatz, 1993; Ottmar, 2002; Rowell & LeVan—Green, 2005). The energy
available to drive convective lofting of emissions is greatly diminished,
and the smoke often remains close to the ground (Ottmar, 2002; Ottmar
et al., 2002).

The convective updraft of a fire’s flaming front often entrains emis-
sions from smoldering combustion along the fire front and in the
postfrontal fuelbed, resulting in a smoke plume that is a mixture of
emissions created by flaming and smoldering combustion. It is these
convectively lofted emissions that have the greatest potential for
impacting air pollution beyond the local vicinity of a fire. Most field
studies of fire emissions have employed aircraft or towers as sampling
platforms and have measured the fresh smoke plumes of fire convective
updrafts. Smoldering combustion that is not entrained in the convective
updraft or is sustained without open flame is referred to as residual
smoldering combustion (RSC; Bertschi et al., 2003; Wade & Lunsford,
1989). RSC generally involves the combustion of large diameter fuels
and belowground biomass (e.g., peat, duff, and roots) and may persist
for days or weeks after flaming combustion has ceased (Ward et al.,
1992). Emissions from RSC can be quite significant; in boreal and
temperate forests RSC may comprise 50% or more of the biomass
consumed in some fire events (Kasischke et al., 2000; Reinhardt et al.,
1991).

4.3. Emission data

The standard metric employed in the measurement of fire emissions is the
excess mixing ratio, AX, defined as

AX = Xplume - kagd (41)

where Xpjume and Xpieq are the mixing ratio of compound X in the
fresh smoke plume and the background air, respectively (Ward &
Radke, 1993). Emission data is typically reported as emission ratios
(ERx/y) or emission factors (EFx). The ERy,y is the excess mixing ratio
of species X normalized to the excess ratio of a reference species Y,
typically CO or CO,:

AX

ERxy =3y

4.2)
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This chapter presents emission data as emission factors, calculated
using the carbon mass balance method (Ward & Radke, 1993), and
defined as the mass of a compound released per mass of dry fuel
consumed, in units of gkg_l. The emission factor for compound X, EFx,
may be estimated using

MMx AX
EFx = Fc x 1000 x —>= x o (4.3)
n
Cr= Z N; x AC; (4.4)

=1

where AX is the excess molar mixing ratio of compound X (Eq. (4.1)),
Ct the total excess molar mixing ratio of carbon emitted, MMy the
molecular mass of compound X (gmole™"), 12 the molar mass of carbon
(gmole™"), Fc the mass fraction of carbon in the dry fuel, and 1000
(gkg™") a unit conversion factor (Yokelson et al., 1999). Elemental
analysis of wildland fuels from a wide range of vegetation types and
ecosystems shows Fc falls between 0.45 and 0.55 (Chen et al., 2007,
Lobert et al., 1991; Susott et al., 1991, 1996). A detailed discussion on
the elemental analysis of wildland fuels is provided by Susott et al. (1996).
Ct may be calculated using Eq. (4.4), where n is the number of emitted
species measured, N the number of moles of carbon in species j, and AC;
is the excess mixing ratio measured for species j.

The creation of wildland fire source terms for chemical transport or air
quality modeling generally requires a mass emission estimate, which EFx
provides. Emission data reported as ERx,y can be converted to EFx
using

MMy
EFx = ER
X X/Y X MMy

x EFy (4.5)

where ERx/y is the molar emission ratio of compound X to a reference
compound Y (as defined in Eq. (4.2), MMy and MMy are the molecular
mass of compounds X and Y (gmole™"), and EFy is the emission factor
for reference compound Y (Eq. (4.3)).

The fire behavior associated with emissions is often characterized using
the CE or the MCE, indices that describe the relative amount of flaming
and smoldering combustion in a biomass fire (Ward & Radke, 1993). The
CE is the molar ratio of CO, emitted to the total moles of carbon emitted.
CE may be expressed as the ratio of excess moles of carbon emitted
as CO, to the molar sum of carbon (C) emitted, Ct (Eq. (4.6)). MCE is
defined as the ratio of CO, emitted to the sum of emitted CO and CO,
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(Eq. (4.7); Ward & Radke, 1993).

ACO,

CE==;~ (4.6)
ACO,

MCE =3¢, + ACO @.7)

4.4. Emissions factors for global and continental scale modeling
4.4.1. Introduction

In this section, we provide a synthesis of emissions data from the literature
and previously unpublished research for use in global to continental scale
studies investigating the role of wildland fire emissions in atmospheric
chemistry and climate. Since the research of Andreae and Merlet (2001),
knowledge of emissions from wildland fires in tropical regions has
increased greatly through extensive field campaigns in southern Africa
(SAFARI-2000) (Swap et al., 2003) and Brazil (e.g., The Tropical Forest
and Fire Emissions Experiment; Yokelson et al., 2007). The synthesis
presented here includes previously unpublished emissions data from field
studies of 56 fires covering a broad range North American ecosystems. The
emission data is presented by geographic zones (boreal, temperate, and
tropical) and vegetation group (forest and savanna/rangeland), allowing
modelers to account for the different emission characteristics exhibited by
biomass burning in these disparate regions.

Numerous global to continental scale studies using global chemical
transport models have sought to elucidate the role of biomass burning in
atmospheric chemistry and climate. Recent studies include the role of
African biomass burning on tropical O in the Atlantic (Jourdain et al.,
2007), the global impacts of aerosol emitted from major source regions
(Koch et al., 2007), and the influence of biomass burning on radiative
forcing via aerosol and O; production (Naik et al., 2007). These studies
consider the large-scale influence of widespread, seasonal, regional
burning. The coarse grids (1° x 1° to 6° x 6°) of global chemical transport
models used in such studies integrate fire activity across a heterogeneous
mix of ecosystems (e.g. grasslands, shrublands, and open woodlands;
Hely et al., 2003; Sinha et al., 2003). Emission factors for generalized
vegetation types (e.g., tropical savanna), which synthesize data from
studies encompassing a broad range of geographic regions (e.g., western
and southern Africa, Brazil, Australia), ecosystems, and land use modes,
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are appropriate for global to continental scale investigations using global
chemical transport models.

Biomass burning in the tropics is dominated by anthropogenic
activities associated with agriculture (Fearnside, 1990; Hao & Liu,
1994; Kauffman et al., 2003, Roberts & Wooster, 2007). In the tropics,
fire activity occurs largely within a region’s “‘burning season’ (e.g., June
through November in the southern Africa; Giglio et al., 2006). The
tropical savanna vegetation group represents grassland, shrubland, and
woodland savanna ecosystems found in South America, Africa, India,
Mainland Southeast Asia, and Australia. The tropical savanna and
tropical forest emission data synthesizes an extensive collection of studies
conducted in Brazil, Africa, and Australia.

The wildland fire activity in temperate zones includes wildfire and
prescribed burning (see Section 4.4.2). Prescribed fires are defined as
fires ignited by management actions to meet specific, nonagricultural
objectives, such as fuel reduction and ecosystem management and
restoration (Finney et al., 2005; Hardy et al.,, 2002). Wildfires are
unplanned wildland fires. The temperate zone emission data has been
grouped as forest or rangeland (grassland/shrubland). Temperate zone
wildfires often occur during a region’s wildfire season when meteorolo-
gical and fuel conditions favor high intensity, rapidly spreading fires (e.g.,
July through September in the interior mountain west of the United
States and Canada). Conversely, prescribed fire is typically employed
under meteorological and fuel conditions favorable for low-intensity fires
and selective fuel reduction (Fernandes & Botelho, 2004; Finney et al.,
2005; Hardy et al., 2002; Price et al., 2007; Smith et al., 2004). Published
emission studies for wildland fire in Europe and Central Asia are
extremely sparse. As a result, the temperate zone emission data draws
mostly from field studies of wildfires and prescribed fires in the United
States and southwestern Canada.

Wildfires occurring in the boreal regions of Russia, Canada, and
Alaska are estimated to comprise about 20% of annual global biomass
burning emissions (van der Werf et al., 2006). Due to the lack of
published emission studies, boreal zone emission data is given only for
forests, and relies largely on data collected in Canada and Alaska.
Despite the significance of boreal fires in Russia, published emission
studies for fires in this region are extremely limited.

4.4.2. Methods

The emission data is presented here as emission factors (see Section 4.3).
Emission factors defined following Eq. (4.3) were used unchanged.
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Emission factors given as the fraction of carbon burned were adjusted
using the fuel carbon content (F¢) provided by the authors. In the absence
of an author provided Fc, a value of 0.50 was used. The F¢ value of 0.50
is consistent with F- measurements for a wide range of vegetation types
and ecosystems and is likely accurate to within +10% (Chen et al., 2007;
Lobert et al., 1991; Susott et al., 1991, 1996). When emission data was
provided as ERx/y, the data was converted to EFx using Eq. (4.5). When
EFy was not supplied by the authors, it was either calculated from the
reported data if possible (using Eqs. (4.1-4.4)) or estimated based on EFy
data for the appropriate vegetation cover group.

Most of the available emission data was obtained from near source,
airborne sampling that measures an integrated mixture of emissions from
flaming and smoldering combustion. Because the different fire phases
often occur simultancously and in close proximity, differentiating
emissions by phase is problematic, even for ground-based measurements.
Therefore, we have not attempted to tabulate emission factors by fire
phase. When emission data was reported by flaming and smoldering
phases, average emission factors were calculated by weighting the phases
to achieve an MCE equal to the average MCE of the appropriate
vegetation cover group.

The combination of data from wildfires and prescribed fires for
temperate zone EFs may seem inappropriate given their different fire
behavior characteristics. Temperate zone wildfires are generally more
intense than prescribed fires, exhibiting higher rates of spread, greater
flame lengths and fire line intensities, and sometimes crown fire
(Fernandes & Botelho, 2004; Finney et al., 2005). The greater intensity
of wildfires might be expected to result in greater CE compared to lower
intensity for prescribed burns. However, during the temperate zone
wildfire season, the combination of low fuel moistures (in particular for
large diameter woody surface fuels and duff) and high-intensity fire fronts
facilitates postfrontal consumption of large woody surface fuels and duff
(Albini & Reinhardt, 1995). While pockets of intermittent open flame do
persists in postfrontal combustion, low-efficiency, smoldering combustion
dominates fuel consumption (Albini & Reinhardt, 1995; Ottmar, 2002;
Ottmar et al., 2002). Postfrontal combustion of woody fuels and duff may
comprise a significant portion of the total fuel consumed in a fire event
(Reinhardt et al., 1991). Conversely, prescribed burning in temperate
zones of North America and Europe is generally typified by low-intensity
fire occurring under conditions when large woody surface fuels and duff
moistures are moderate (Fernandes & Botelho, 2004; Finney et al., 2005;
Hardy et al., 2002). These conditions minimize consumption of the large
woody fuels and duff, which limits the detrimental fire effects on the
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ecosystem (Reinhardt et al., 2001), a key management objective of
prescribed fire.

In a wildfire event, the convective plume integration of emissions from
the high-intensity flaming front and a portion of the emissions from
postfrontal smoldering combustion result in fire average combustion
efficiencies similar to those of prescribed fires, where flaming combustion
comprises a larger fraction of the total fuel consumption. For example,
airborne measurements of conifer forest wildfire smoke plumes in the
western United States observed MCE of 0.89-0.94 (Babbit et al., 1994;
Friedli et al., 2001) compared with an average MCE of 0.92 from studies
of 21 prescribed fires in western conifer forests (see Appendix A).
Numerous laboratory and field studies (both ground-based and airborne)
have shown EFs for a wide range of compounds are linearly correlated
with MCE, particularly within vegetation types (Hao et al., 1996;
Korontzi et al., 2003; Sinha et al., 2003; Yokelson et al., 2003). Therefore,
the similar MCE of wildfires and prescribed fires suggests the aggregation
of emissions data from these fire events is appropriate for estimating EFs
for use in global to continental scale modeling.

4.4.3. Results and discussion

Emission factor data has been compiled in Table 4.1 according to five
generalized vegetation cover groups: temperate forest, temperate range-
lands, tropical savanna, tropical forest, and boreal forest. In most
instances, the values listed in Table 4.1 are the average of the values
obtained from the cited literature and previously unpublished data
presented in Appendix A. The scope of Table 4.1 has been limited to
compounds that dominate wildland fire emissions or that have a
significant potential to impact atmospheric chemistry. Table 4.1 is not
an all inclusive list of species that have been observed in wildland fire
emissions (e.g., halocarbons are known to be minor products of wildland
fire; Andreae & Merlet, 2001 but are not included). For the species
considered in our synthesis, the data coverage is thorough for temperate
and tropical forests and tropical savannas. The boreal forest data lacks
measurements of nonmethane hydrocarbons (NMHC) and heavy OVOC.
The temperate rangeland data does not include emission factors for
formic acid, acetic acid, and formaldehyde. These three compounds,
along with methanol, comprise a large fraction of both OVOC emissions
and total NMVOC emissions in the other vegetation cover groups. We
report emissions factors for PM, s; however, a detailed discussion of
the complex topic of aerosol properties (size distributions, chemistry,
thermodynamics) is beyond the scope of this chapter. Reid et al. (2005)
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provide a thorough review of biomass burning aerosol. Due to the lack
of published data for coarse aerosol (e.g., diameter<10pum or total
particulate matter) emissions from wildland fire, we have not included EF
for coarse aerosol.

Emissions are dominated by CO, and CO, which comprise 92-95%
(87-92% of C burned) and 4-7% (6-10% of C burned) of total emissions,
respectively. As discussed in Section 4.2, the MCE provides a measure of
the relative amount of flaming and smoldering combustion in a wildland
fire. The MCE is highest for tropical savannas and temperate rangelands
and lowest for tropical forests. The high MCE of the savanna and
rangeland vegetation cover groups reflects the dominance of flaming
combustion in the burning of herbaceous fuels. The heat required for
ignition of a fuel element depends on the fuel element’s surface area-to-
volume ratio (a larger surface area-to-volume ratio requires less heat for
ignition) and the moisture content of the fuel (Rothermel, 1972). The
large surface area-to-volume ratio of grasses makes these fuels prone to
ignition and favors rapid and thorough consumption in open flames.
Low-fuel moistures also favor flaming combustion in herbaceous fuels.
During a region’s dry season, herbaceous vegetation, especially annual
grasses, typically have very low moisture content.

Boreal forests exhibited the greatest variability in MCE (0.78-0.95)
(Cofer et al., 1998; Nance et al., 1993). The lower end of this range reflects
the contribution of smoldering duff in the postfrontal fuelbed, which
burns with a low MCE (Bertschi et al., 2003; Goode et al., 1999;
Yokelson et al., 1997) and can be a significant component of fuel loading
in boreal ecosystems (French et al., 2004). The strong convective updrafts
often accompanying boreal crown fires can effectively entrain emissions
from postfrontal combustion (Trentmann et al., 2006). The low MCE
observed for some boreal fires may reflect significant entrainment of
postfrontal duff combustion into the convective plumes sampled
in airborne studies. Based on their observations of high CO emissions
from extremely intense (overall fire intensity of 38,400 kW m™") flaming
crown fires, Cofer et al. (1998) have suggested that intense crown fires
may behave as a fuel-rich combustion system with an associated low
combustion efficiency.

After CO, and CO, the species accounting for the next largest share
of emissions is PM, s, followed by CHy4. The EFpy, 5 in Table 4.1 is based
on tower measurements obtained in the convective updrafts of fires
at 3-15m above the surface (see Appendix A). Numerous airborne
studies provide aerosol emission data for a wide range of ecosystems
(Reid et al.,, 2005). However, the EFs measured in these studies
encompass aerosol with diameters up to 3.5 or 4um. Because these



Chemical Composition of Wildland Fire Emissions 93

measurements include aerosol with diameters outside the traditional
definition of fine aerosol (diameter<?2.5pum), these studies are not
included in Table 4.1.

Emissions of CH4 from wildland fires appear to have a significant
impact on the global levels of this important greenhouse gas (Simpson
et al., 2006). Tropical forests have the highest EFcy, and the highest
CH4:CO EF ratio (0.056 vs. 0.033-0.043). The high CH4 emissions for
tropical forests may reflect the nature of deforestation burns, which
typically involve slashed and dried vegetation with large woody fuels
being a significant portion of the vegetation consumed (Fearnside, 1990;
Kauffmann et al.,, 2003). Boreal fires involving similar, intentionally
arranged fuelbeds, such as slash/tramp or chained fuels (Cofer et al.,
1998; Nance et al., 1993; Radke et al., 1991), exhibit similar CH4:CO EF
ratios. Unlike burning in tropical forests, fires in intentionally arranged
fuels is not a significant fraction of boreal fire activity (French et al.,
2004).

Total emissions of NMVOC exceed that of PM, 5 and CH,4 combined
and account for 1-2% of fuel C burned (excluding temperate rangelands
for which the lack of OVOC measurements prohibits a meaningful
assessment). OVOC account for ~60-70% of NMVOC emission and
exceed NMHC emissions even on a carbon mass basis. Methanol, acetic
acid, formic acid, and formaldehyde dominate OVOC; emissions of
these four compounds alone equals or surpasses emissions of NMHC.
Figure 4.1 gives the emissions of NMVOC functional classes as a percent
of total NMVOC emissions on a carbon basis.

NMVOC of importance in tropospheric chemistry may be grouped
into four major classes: alkanes, alkenes, aromatic hydrocarbons, and
oxygenated compounds. Oxygenated compounds encompass a diverse
range of chemical species that include aldehydes, ketones, alcohols,
furans, and acids. In the atmosphere, NMVOC are subjected to a number
of physical and chemical processes that lead to their transformation or
removal. Wet and dry deposition remove NMVOC from the atmosphere
(Seinfeld & Pandis, 1998). Transformation of NMVOC occurs through
photochemical processing, initiated by photolysis or reaction with OH
radical, NOjs radical, or Oz (Atkinson & Arey, 2003). The atmospheric
oxidation of NMVOC is an extremely complex process that is closely
coupled with the formation of both O; and SOA (Ito et al., 2007;
Tsigaridis & Kanakidou, 2003; reviews of tropospheric VOC chemistry
and SOA can be found in Atkinson & Arey, 2003 and Kanakidou et al.,
2005, respectively).

The NMVOC emitted by wildland fires is dominated by oxygenated
compounds and unsaturated hydrocarbons (Fig. 4.1). This mix of
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Wildland Fire Emissions

Percent of Total Emissions by Carbon

alka alke alky aro ald ket alc acid fur

Figure 4.1. Wildland fire emissions aggregated by compound class and given as a percent of
total emissions on a carbon basis. Based on an average of temperate and tropical forests and
tropical savanna data from Table 4.1. Boreal forest and temperate rangeland data was not
included due to insufficient data coverage. Compound classes listed on the x-axis are defined
as follows: alka, alkanes; alke, alkenes; alky, alkynes; aro, aromatic hydrocarbons; ald,
aldehydes; ket, ketones; alc, methanol; acid, formic and acetic acids; and fur, furans.

emissions is highly reactive, as demonstrated by the relatively short
atmospheric lifetimes of many of these compounds with respect to gas
phase reaction or photolysis (Table 4.2). The highly reactive nature of
wildland fire emissions gives wildland fires a significant potential to
influence tropospheric chemistry and degrade air quality. Through VOC-—
NO, photochemistry, wildland fire emissions lead to O; formation on
time scales of hours to days and over local to intercontinental distances
(Real et al., 2007; Sudo & Akimoto, 2007; Trentmann et al., 2005). In
addition to O3 formation, the gas-phase oxidation of NMVOC can
generate semivolatile oxygenated compounds. These semivolatile oxyge-
nated compounds contribute to atmospheric aerosol loading through the
formation of new aerosol via gas-to-particle conversion and by
condensation on preexisting aerosol (de Gouw et al., 2005; Heald et al.,
2005; Tsigaridis & Kanakidou, 2003). SOA formation resulting from the
photochemical processing of wildland fire emissions can be quite
significant relative to other sources (Heald et al., 2006). The formation
of SOA can be quite rapid: wildland fire aerosol mass has been observed
to increase by a factor of 1.5-2 over a period of a few days (Reid et al.,
1998, 2005).
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Table 4.2. Estimated lifetimes of dominant emissions from wildfire®

Lifetime due to reaction or photolysis®

OH°® NO;¢ 05° Photolysis’
Ethene 1.4 days 225 days 10 days
Formaldehyde 1.2 days 80 days >4.5 years 4 hours
Methanol® 12 days 1 year
Acetic acid™ 14.5 days
Ethane 46.7 days
Propene 5.3 hours 4.9 days 1.6 days
Ethyne 13.2 days
Acetadehyde 8.8 hours 17 days >4.5 years 6 days
Propane 10 days ~7 years >4500 years
2,3-butadione 49 days 1 hour
Formic acid™ 25.7 days
Benzene 9.4 days >4 years >4.5 years

Notes: The compounds listed comprise ~80% of the total emissions on a molar basis.
“Wildland fire emissions are an average of temperate and tropical forest and tropical
savanna data from Table 4.1, following conversion to moles.

PAll lifetime data from Atkinson (2000), or estimated based on rate coefficients from
Atkinson and Ayer (2003), unless otherwise noted.

°For a 12-hour daytime average OH concentration of 2.0 x 10° moleccm >,
dFor a 12-hour daytime average NO; concentration of 5.0 x 10® moleccm™>.

°For a 24-hour daytime average O3 concentration of 7.0 x 10'" moleccmg.

"For overhead sun.

In a study of the global budget of methanol, Jacob et al. (2005) estimate the atmospheric
lifetime of methanol is 7 days with removal processes being: 63% reaction with OH, 26% dry
deposition, 6% wet deposition, 5% ocean deposition.

hRate coefficient data from Atkinson et al. (2001).

Dry and wet deposition is believed to be an important removal process for formic and acetic
acids. Sanhueza et al. (1996) report similar atmospheric lifetimes for formic and acetic acids:
~ 5 days for dry deposition and ~ 5 days for wet deposition.

4.5. Conclusions

Wildland fire emissions data from the literature and an extensive series of
previously unpublished field experiments has been synthesized according
to generalized vegetation cover groups, providing a dataset for use in
global to continental scale studies of atmospheric chemistry and climate.
Emissions from wildland fires are a rich and complex mixture of
gases and aerosols. Primary pollutants emitted from wildland fires
include greenhouse gases (CO,, CHy), NMVOC, NO,, and aerosol. The
NMVOC mixture produced by wildland fires is highly reactive.
Participation of NMVOC fire emissions in VOC-NO, photochemistry
leads to the formation of O; and SOA. Through direct emissions and
secondary chemical and physical processes, wildland fire can have a
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significant impact on tropospheric chemistry and serve as a major source
of air pollution.
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Appendix A. Emission factors for North America ecosystems

This appendix presents previously unpublished results from emission
studies of prescribed fires in the southeastern, mid-western, and western
United States, western Canada, and Alaska. The prescribed fire emissions
data may be used to estimate emissions of several key primary pollutants
from fires in a broad range of North American ecosystems for which
prescribed fire is an essential land management tool. The prescribed fire
studies indicate emission factors for many pollutants exhibit significant
variability across vegetation types. These findings suggest modeling
studies to assess the air quality impact of wildland fire at the local to
regional scales may benefit from data that captures interecosystem
variations in EFs. This may be particularly important for quantifying the
incremental contribution of wildland fire emissions to air pollution in
urban areas.

The coarsely grouped EFs in Table 4.1 will often be adequate for
continental and global scales studies of atmospheric chemistry,
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biogeochemical cycling, and climate. However, the generalized nature of
the data synthesis may not provide the differentiation among ecosystems
that is necessary to accurately assess and predict the impact of wildand
fire on air quality at the local to regional scale. The ecosystem specific
emissions data presented in this section is representative of the
information land management agencies and air quality managers may
find necessary to successfully address the air quality issues presented by
wildland fire.

A.l. Field sites and methods

Emission data was obtained for 56 prescribed fires in 9 states and 1
province (Table Al). The emission studies cover a wide range of
ecosystems types, but may be aggregated as southeastern conifer forest
(mostly pine, a few pine-hardwood mix), interior mountain west conifer
forest (ponderosa pine and Douglas-fir), grassland (mostly wetland
grasses) shrubland (southeastern), and boreal forest vegetation groups.
The prescribed burns in southeastern and interior mountain west were
low- to moderate-intensity understory burns. The two boreal forest fires
sampled in Alaska were high-intensity burn-out fires employed as a fire
suppression tactic during the intense Alaska fire season of 2004. The
burn-out fires involved surface and canopy fuels. These high-intensity
crown fires were representative of the fire activity during June and July of
2004 when 6 million acres were burned in Alaska.

The emission studies used the Fire Atmosphere Sampling System
(FASS) (Hao et al., 1996). Briefly, the FASS instrument uses a 3-15m
tower to obtain in situ measurements of gases, particulate matter, vertical
velocity, and air temperature. The FASS collects integrated PM> 5 filter
and gas canister samples for background air, primarily flaming
combustion, the transition from flaming to smoldering combustion, and
mostly smoldering combustion. The PM,; s filter samples are analyzed for
total mass, organic and elemental carbon. The canister samples are
analyzed for CO,, CO, CHy, and C2-C3 alkanes, alkenes, and alkynes.
The FASS also provides continuous measurements of CO, CO,, vertical
velocity, and air temperature, which gives a unique, useful time-series of
the fire from a point “within” the burn.

Two to six FASS instrument towers were deployed within the burn
perimeter for each prescribed fire. The carbon mass balance method
(Ward & Radke, 1993) was used for calculating EFs with an assumed fuel
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carbon content of 50%. The Fc value of 0.50 is consistent with in situ
Fc measurements for a wide range of vegetation types and is likely
accurate to within +10% (Lobert et al., 1991; Susott et al., 1991, 1996).
Particulate matter was assumed to be 60% carbon by weight. The
simultaneous measurements of plume vertical velocity, flux of emissions,
and carbon were used to determine the rate of fuel consumption,
which provides the weighting factors applied to the integrated PM; s
filter and canister samples to obtain fire average EFs for each FASS
tower. The mean of the EFs produced from each FASS tower deployed
during the fire were averaged to obtain an EF value for the fire as a
whole.

A.2. Results

Emission factors were measured for PM, s, CO,, CO, CH,, and C2-C3
hydrocarbons. MCE and EFs for each fire are given in Table Al.
Following CO, and CO, PM,s is the dominant species emitted
from prescribed fires, consistent with previous findings for a wide range
of ecosystems, fire types, and measurement techniques (see references
from Table 4.1). Fire weighted average EFpy»s exhibits significant
variability within vegetation groups. The EFpy; 5 for the grassland and
shrub cover group is lowest (10.2 gkg™') and differs significantly from the
average values of the forest cover groups (p<0.001 or better for Welch
two sample f-test and Wilcoxon rank sum test). Emissions of C2 and C3
hydrocarbons equal 78-114% of CH, emissions. Alkene emissions
exceed emissions of their respective alkanes for all individual fires, which
appears to be a common characteristic of biomass burning (see Table 4.1
and related references). These light hydrocarbons (C2-C3) typically
comprise about half of the total NMHC emissions from wildland fire (see
Table 4.1).

The CH,4, C,Hg, C3Hg, and CsHg emissions for the interior mountain
west conifer forests are significantly higher than those for the
southeastern conifer forests and the grassland/shrubland vegetation
groups (p<0.05 or better for Welch two sample #-test and Wilcoxon
rank sum test). The lower MCE of the interior mountain west conifer fires
suggests this difference may be a function of fire behavior. Emission
factors for CH,; and many hydrocarbons often exhibit a strong
linear relationship with MCE (Sinha et al., 2003; Yokelson et al.,
2003). The EFs for C,H,, C,H4, and C3H4 are not statistically different
across the vegetation groups.
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